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Abstract
• Protein-protein interaction (PPI) binding sites prediction – an vital problem for biology

– Experimental methods are time and labor intensive
– Many computational approaches are proposed: sequence-based ones are very promising
– The prediction performance of current programs are far from satisfaction

• DELPHI - a new sequence-based Deep Learning model for PPI binding sites prediction

– A novel ensemble model architecture
– Three novel features
– More accurate than the leading sequence-based programs

Results
Dataset Proteins Residues binding

total binding non-binding % of total
Dset 4489 448 116,500 15,810 100,690 13.57
Dset 355 355 95,940 11,467 84,473 11.95
Dset 1862 186 36,219 5,517 30,702 15.23
Dset 722 72 18,140 1,923 16,217 10.60
Dset 1641 164 33,681 6,096 27,585 18.10
Train+Validate 9,982 4,254,198 427,687 3,826,511 10.05

Table 1: The datasets used for training, validation, and testing. The columns give, in order, the dataset names, the
number of proteins in each dataset, the total number of residues, the number of binding, and the number of non-
binding residues in each dataset, and the percentage of the binding residues out of total.

Table 2: Performance comparison on Dset 448 and
Dset 355. Programs are sorted in ascending order by
AUPRC. Darker colours represent better results. The
evaluation of the programs marked with ∗ is by Zhang.9

Predictor Sens. Spec. Prec. Acc. F1 MCC AUROCAUPRC
Dset 448

SPPIDER3* 0.202 0.870 0.194 0.781 0.198 0.071 0.517 0.159
SPRINT5* 0.183 0.873 0.183 0.781 0.183 0.057 0.570 0.167
PSIVER2* 0.191 0.874 0.191 0.783 0.191 0.066 0.581 0.170
SPRINGS4* 0.229 0.882 0.228 0.796 0.229 0.111 0.625 0.201
LORIS1* 0.264 0.887 0.263 0.805 0.263 0.151 0.656 0.228
CRFPPI7* 0.268 0.887 0.264 0.805 0.266 0.154 0.681 0.238
SSWRF6* 0.288 0.891 0.286 0.811 0.287 0.178 0.687 0.256
SCRIBER9 0.334 0.896 0.332 0.821 0.333 0.230 0.715 0.287
DELPHI 0.371 0.901 0.371 0.829 0.371 0.272 0.737 0.337

Dset 355
SPPIDER 0.180 0.889 0.180 0.804 0.180 0.068 0.515 0.138
SPRINT 0.168 0.886 0.167 0.801 0.168 0.054 0.571 0.150
PSIVER 0.178 0.888 0.177 0.803 0.177 0.065 0.583 0.155
SPRINGS 0.211 0.892 0.210 0.811 0.211 0.103 0.608 0.178
LORIS 0.242 0.896 0.240 0.818 0.241 0.137 0.637 0.203
CRFPPI 0.247 0.897 0.245 0.819 0.246 0.143 0.662 0.214
SSWRF 0.268 0.901 0.268 0.825 0.268 0.168 0.667 0.228
DLPred8 0.308 0.906 0.308 0.835 0.308 0.214 0.724 0.272
SCRIBER 0.322 0.908 0.322 0.838 0.322 0.230 0.719 0.275
DELPHI 0.364 0.914 0.364 0.848 0.364 0.278 0.746 0.326

Table 3: Performance comparison on Dset 186,
Dset 164, and Dset 72 using the same metrics. Darker
colours represent better results.

Predictor Sens. Spec. Prec. Acc. F1 MCC AUROCAUPRC
Dset 186

SPPIDER 0.194 0.848 0.186 0.748 0.190 0.041 0.499 0.165
SCRIBER 0.279 0.870 0.279 0.780 0.279 0.150 0.647 0.246
DLPred 0.320 0.878 0.320 0.793 0.320 0.198 0.694 0.290
DELPHI 0.351 0.884 0.351 0.803 0.351 0.235 0.710 0.319

Dset 164
SPPIDER 0.264 0.828 0.253 0.726 0.258 0.090 0.528 0.220
PSIVER 0.217 0.826 0.216 0.716 0.216 0.043 0.554 0.205
SSWRF 0.266 0.838 0.266 0.734 0.266 0.103 0.606 0.243
CRFPPI 0.280 0.841 0.280 0.739 0.280 0.121 0.608 0.267
SCRIBER 0.327 0.851 0.327 0.756 0.327 0.179 0.657 0.301
DLPred 0.338 0.854 0.338 0.760 0.338 0.192 0.672 0.330
DELPHI 0.352 0.857 0.352 0.765 0.352 0.209 0.685 0.332

Dset 72
SPPIDER 0.188 0.898 0.179 0.823 0.183 0.084 0.522 0.134
PSIVER 0.152 0.899 0.152 0.820 0.152 0.052 0.604 0.141
CRFPPI 0.248 0.911 0.248 0.840 0.248 0.158 0.669 0.200
SSWRF 0.246 0.911 0.246 0.840 0.246 0.157 0.678 0.198
SCRIBER 0.232 0.909 0.232 0.837 0.232 0.141 0.680 0.198
DLPred 0.246 0.901 0.246 0.826 0.246 0.148 0.688 0.215
DELPHI 0.274 0.914 0.274 0.847 0.274 0.189 0.711 0.237

Ablation study

Figure 1: The areas under PR curves with the removal
of one out of the twelve features on Dset 448. One
feature is removed each time, and the DELPHI model
is trained, validated, and tested using the remaining
eleven features. The x-axis shows the removed fea-
tures where ’None’ indicates using all twelve features,
and the y-axis is the AUPRC achieved. The features
are sorted decreasingly by the AUPRC values.
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Figure 2: The evaluation of the DELPHI model architec-
ture and the three novel features. The area under PR curves
(left) and MCC (right) are plotted separately. Each plot
contains the performance of using CNN, RNN, and the en-
semble model on Dset 448. Two different colors indicate
with and without the three new features.

Evolutionary conservation

Figure 3: Three proteins were evaluated to compare the PPI predicted by DELPHI (green and orange) with the degree
of site-by-site conservation (blue). Only sites represented in ten or more taxa are included resulting in some apparent
gaps. The proteins are (a) alpha haemoglobin, (b) SRY and (c) SH2D2A.
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Figure 4: The architecture of DELPHI. Left: the CNN component of the model. Middle: the RNN component of the
model. Right: The ensemble model.
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Figure 5: The many-to-one prediction. Sliding windows of size 31, stride 1 are put on top of an input protein se-
quence. Each time, a sub-sequence of length 31 is extracted. The model predicts the protein-binding propensity of
the middle amino acid for each sub-sequence.

Input Features
Feature Program Dimension

High-scoring segment pair (HSP) Compute 1
3-mer amino acid embedding (ProtVec1D) Load/compute 1
Position information Compute 1
Position-specific scoring matrix (PSSM) Psi-Blast 20
Evolutionary conservation (ECO) Hhblits 1
Putative relative solvent accessibility (RSA) ASAquick 1
Relative amino acid propensity (RAA) Load 1
Putative protein-binding disorder ANCHOR 1
Hydropathy index Load 1
Physicochemical characteristics Load 3
Physical properties Load 7
PKx Load 1

Table 4: The feature names, computation programs, and
dimensions of each feature used by DELPHI. The first
three features are novel.

DELPHI Web Server

Figure 6: The interface of the DELPHI web server. It
takes protein sequences in FASTA format as input, and
the result will be emailed to the user.

Conclusions
• DELPHI is the most accurate sequence-based PPI sites predictor.

• The three novel features and the ensemble architecture can be potentially used in other protein
sequence classifiers.

Availability
The source code of DELPHI is freely available from github.com/lucian-ilie/DELPHI/.
All datasets and results as well the DELPHI web server is available from www.csd.uwo.ca/~yli922/index.php.
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