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Save the weights of the Convolution layer after fine-tuning Save the weights of the GRU layer after fine-tuning Load the weights of the Convolution and GRU layers

Dataset Proteins Residues binding
total binding non-binding % of total
Dset_448° 448 116,500 15,810 100,690 13.57
Dset 355 355 95,940 11,467 84,473 11.95
Dset_1862 186 36,219 5,517 30,702 15.23
Dset 722 72 18140 1923 16217 10.60 Model Input and Output
Dset_164! 164 33,681 6,096 27,585 18.10 window 1
Train+Validate 9,982 4,254,198 427,687 3,826,511 10.05 R |

Figure 4: The architecture of DELPHI. Left: the CNN component of the model. Middle: the RNN component of the
model. Right: The ensemble model.
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Table 1: The datasets used for training, validation, and testing. The columns give, in order, the dataset names, the mneew
number of proteins in each dataset, the total number of residues, the number of binding, and the number of non-
binding residues in each dataset, and the percentage of the binding residues out of total.
Table 2: Performance comparison on Dset 448 and  quple 3:  Performance comparison on Dset 186, i':. Partial sequences of size 31 numeric propensity for protein binding of

the centered residues
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Dset 355. Programs are sorted in ascending order by
AUPRC. Darker colours represent better results. The
evaluation of the programs marked with * is by Zhang.’

Dset 164, and Dset 72 using the same metrics. Darker
colours represent better results.

Predictor Sens. Spec. Prec. Acc. F1 MCC AUROCAUPRC
Predictor ~ Sens. Spec. Prec. Acc. FI MCCAUROCAUPRC Dset 186

: Dset 4438 SPPIDER 0.194 0.848 0.186 0.748 0.190 0.041 0.499 0.165 Figure 5: The many-to-one prediction. Sliding windows of size 31, stride 1 are put on top of an input protein se-
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Run DELPHI
Welcome to the DELPHI web server. DELPHI is a sequence-based deep learning suite for PPI binding sites prediction.

Please enter the protein sequences and your email address then click predict.
The server allows maximum 10 input sequences at a time with minimum 31 amino acid residues.
The sequence should be in FASTA format. Each protein should consist of two lines: >[protein_id] and [protein_sequence]. The results will be emailed to you.

Example input:

>Q53WI4
MVVLKVTLLEGRPPEKKRELVRRLTEMASRLLGEPYEEVRVILYEVRRDQWAAGGVLFSDKEGT
>QOTCE9

MKAKELREKSVEELNTELLNLLREQFNLRMQAASGQLQQSHLLKQVRRDVARVKTLLNEKAGA
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Table 4: The feature names, computation programs, and Figure 6: The interface of the DELPHI web server. It
Ablation Study dimensions of each feature used by DELPHI. The first takes proteip sequences in FASTA format as input, and
three features are novel. the result will be emailed to the user.

AUPRC

I Old features
New features

Conclusions

 DELPHI 1s the most accurate sequence-based PPI sites predictor.

e The three novel features and the ensemble architecture can be potentially used in other protein
sequence classifiers.

Figure 1: The areas under PR curves with the removal

of one out of the twelve features on Dset 448. One . oy o

feature 1s removed each time, and the DELPHI model Figure 2: The evaluation of the DELPHI model architec- Avallablllty

1s trained, validated, and t.ested using the remaining ture and the three novel features. The area under PR curves The source code of DELPHI is freely available from github . com/lucian—ilie/DELPHI/.

eleven features. The x-axis shows the removed fea- (left) and MCC (right) are plotted separately. Each plot All datasets and results as well the DELPHI web server is available from www.csd.uwo.ca/~y11922/index.php.
tures where ’None’ indicates using all twelve features, contains the performance of using CNN, RNN, and the en-
and the y-axis is the AUPRC achieved. The features semble model on Dset 448. Two different colors indicate References

are sorted decreasingly by the AUPRC values. with and without the three new features.
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Figure 3: Three proteins were evaluated to compare the PPI predicted by DELPHI (green and orange) with the degree ACknOWledgementS

of site-by-site conservation (blue). Only sites represented in ten or more taxa are included resulting in some apparent _ .
saps. The proteins are (a) alpha haemo gl obin, (b) SRY and (c) SH2D2A. The research of L.I. is funded by an NSERC Discovery Grant (R3143A01) and a Research Tools and Instruments Grant (R3143A07). The

research of G.B.G. is funded by an NSERC Discovery Grant RGPIN-2020-05733.




